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Abstract 

We prove a generalized version of the well-known Lichnerowicz formula for the square of the 
N 

most general Dirac operator D on an even-dimensional spin manifold associated to a metric con- 
nection V. We use this formula to compute the subleading term 4~1 (x, x, ~2) of the heat-kernel 
expansion of ~2. The trace of this term plays a key role in the definition of a (euclidian) grav- 
ity action in the context of non-commutative geometry. We show that this gravity action can be 
interpreted as defining a modified euclidian Einstein~artan theory. 
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1. I n t r o d u c t i o n  

When attempting to quantize the electron in 1928, Dirac introduced a first-order operator 

the square of which is the so-called wave operator (d 'Alembertian operator). Later on, in the 

hands of mathematicians generalizations of this operator, called 'Dirac operators' - evolved 

into an important tool of modem mathematics, occurring for example in index theory, gauge 

theory, geometric quantization, etc. 
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More recently, Dirac operators have assumed a significant place in Connes' non- 

commutative geometry [C] as the main ingredient in the definition of a K-cycle. Here 

they encode the geometric structure of the underlying non-commutative 'quantum-spaces'. 
Thus disguised, Dirac operators re-enter modern physics, since non-commutative geome- 

try can be used, e.g. to derive the action of the Standard Model of elementary particles, 
as shown in [CL,KI]. Initially, it remains unclear whether it was possible also to derive 

the Einstein-Hilbert action of gravity using this approach. Further, it was a Dirac operator 

which proved to be the key to answer this question. According to Connes [C], the 'usual' 
Dirac operator D on the spinor bundle S associated to the Levi-Civita connection on a 

four-dimensional spin manifold M is linked to the euclidian Einstein-Hilbert gravity action 
via the Wodzicki residue of the inverse of D 2. This was shown in detail in [K2]. A further 

question that naturally arises is the dependence of this result from the chosen Dirac operator 
D. In other words, does Res(D -2) change i f / )  is a Dirac operator on S different from the 

'usual' one ? 
In this paper we answer this question affirmatively. Moreover, in Section 3, we compute 

the lagrangian of an appropriately defined gravity action 

IGR(D) .-- 2 Res(~_2n+2 ) (1.1) 
2 n (2n - 2) 

for the most general Dirac operator D associated to a metric connection V on a compact spin 

manifold M with dim M = 2n E 4. We proceed as follows: According to the main theorem 
of [KW], there is a relation between the Wodzicki residue Res(ZX -n+l)  of a generalized 

laplacian/~ on a hermitian bundle E over M and ~1 (x, x,/~), which denotes the subleading 
term of its the heat-kernel expansion. It is well known that, given any generalized laplacian 
/~ on E, there exists a connection b E on E and a section F of the endomorphism bundle 

End(E), such that/~ decomposes as 

/~ = A +e + F. (1.2) 

However, this has a slight flaw. The decomposition (1.2) neither provides any method to 
construct the connection ~,E nor the endomorphism F explicitly. Nevertheless, it is exactly 
this endomorphism F 6 / ' (End E) which fully determines the subleading term q~l (x, x,/~) 
of the heat-kernel expansion of ~ (cf. [BGV]). Thus the problem of computing Res (Zx-n +1) 
is transformed into the problem of computing F. 

For an arbitrary generalized laplacian, this might prove to be difficult. However, in the 
case where E = S and the generalized laplacian ZX is the square 9 2 of a Dirac operator 
associated to an arbitrary metric connection V on TM, a constructive version of (1.2) can 
be proved. This will be shown in Section 2 .  Because of its close relationship to the well- 
known Lichnerowicz formula (cf. [L]) we call our decomposition formula a 'generalized 
Lichnerowicz formula'. We understand it as being intrinsic to the Dirac operators studied 
in this paper. 

As already mentioned, we will compute the lagrangian of (1.1) in Section 3, using our 
generalized Lichnerowicz formula as the main technical tool. From a physical point of view, 
this lagrangian can be interpreted as defining a modified (euclidian) Einstein-Cartan theory. 
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2. A generalized Liehnerowiez formula 

145 

Let M be a spin manifold with dim M = 2n and let us denote its Riemannian metric by g. 

The Levi-Civita connection V • F ( T M )  --+ F ( T * M  ® TM)  on M induces a connection 

V s • F(S)  --+ F ( T * M  ® S) on the spinor bundle S which is compatible with the hermitian 

metric ( -, • )s on S. By adding an additional torsion term t ~ a"2 j (M, End TM)  we obtain 

a new covariant derivative 

V : = V + t  (2.1) 

on the tangent bundle TM. Since t is really a one-form on M with values in the bundle of  

skew endomorphism Sk (TM)  (cf. [GHV]), V is in fact compatible with the Riemannian 

metric g and therefore also induces a connection ~ s  = v s  + T on the spinor bundle. Here 

T c ~21(M, End S) denotes the 'lifted' torsion term t c Y21(M, EndTM).  However, in 

general this induced connection ~ s  is neither compatible with the hermitian metric ( -, - ) s 

nor compatible with the Clifford action on S. With respect to a local orthonormal frame 

{ea}l<a<2n of TMIucM we have 

Vc eb = ¢oabcea, t := tabc ea @ e b ® e c, 

VS sI = 1 y a y b  sl ~OgabceC ' ~ S  sl = 1 y a y b  Sl ~ (g.Oab c q_ tabc)e c, 

{e }l<a<2n the corre- where coabc denotes the components of  the Levi-Civita connection, a 

sponding dual frame of  {ea } 1 <a <2n and {sl } 1_</_<dim S a local frame of  S Iu. Note that we use 

the following conventions: 

{ya, yb} = _2~lab, [ya, yb] = 2yab 

for the representation y : C o ( T ' M )  ~ End S of  the complexified Clifford algebra of  T*M 

on the spinor bundle. 
We now define by D :=  y u ~  a first-order operator D • F(S)  ~ F(S)  associated 

to the metric connection V. Since D satisties the relationship [ D, f ] --- y u (0f/Ox ~) for all 

f c C ~ (M) this operator/9 is a Dirac operator, i.e. its square ~2 is a generalized laplacian 

(cf. [BGV]). Note that D is also the most general Dirac operator on the spinor bundle S 

corresponding to a metric connection V on TM. 
According to the well-known Ricci lemma (cf. [GHV]) there is a one-to-one correspon- 

dence between metric connections on T M  and the elements of  ~ I (M, Sk(TM)) .  Conse- 

quently, the set of  all such Dirac operators acting on sections of the spinor bundle S over 

M is parametrized by t ~ a'2 ~ (M, Sk(TM)) .  
For the square of  the Dirac operator D we get the following standard decomposition: 

~)2 ~ t z v ~ S ~ S  tz ~ S  v ~S  # v ~S  ~S  - o  - u - ~  + Y  [Vu'Y ]V~ + ½  (2.2) = y y [v~, ,v~].  

If t = 0, which means that V is identical with the Levi-Civita connection V, Eq. (2.2) is 

the first step to compute the well-known Lichnerowicz formula of  D 2, cf. [L]. Note that none 

of  the first two terms of  (2.2) is covariant in itself but only their sum. Using (2.1) we can, 
however, rearrange the decomposition (2.2) such that each term is manifestly covariant. 
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Moreover, the derivations in the decomposit ion will then be arranged according to their 

degree, 

L e m m a  2.1. Let M be a spin manifold, V the Levi-Civita connection on T M and V defined 

by V : =  V + t with t E ~(-~1 (M, Sk(T M) ). Then the square 5 2 of  the Dirac operator 5 on 

the spinor bundle S associated to V decomposes as 

5 2 = A v -- BuV s + F ' ,  (2.3) 

where B ~ F ( T M ® End S) and F' ~ F ( E n d  S) are defined by 

B a : =  2T a _ yC[Tc, ya] ,  (2.4) 

F '  :=  1 R V .  1EndS + yayb(tVaTb) qt_ yaTaybTb" (2.5) 

-ab~vS~S -- VS eb ) the hori- Furthermore R V denotes the scalar curvature and A v : =  q t a Vb 

zontal laplacian on the spinor bundle corresponding to the Levi-Civita connection V with 

respect to a local orthonormal frame { ea} l <a <2n. 

Proof By inserting - s  V u = VuS + T• in (2.2) and using the compatibil i ty of  the connection 

V s with the Clifford action, so that IV s ,  y a ]  = _yvFva u we get 

, - g U(tv , r u ]  - To) 5 2  : AV -Jr- ~ r  t--#, 

_gUVTuTu _ gUV(2T~tVS ) + yU[Tu, yu]vS  + ½ yuu [Tu, Tv] 

+ y u u [ v S ,  Tu] + yU[T u, yV]Tu. (2.6) 

With the help of  the Clifford relation yUyU + y u y u  = _2gUU and the first Bianchi iden- 

tity Rjkli d- Rklij + Rlijk = 0 one can identify the second term in (2.6) with the 'usual '  

Lichnerowicz term: 

l , , , , r v S  v s ]  = ¼R v " ls.  ~ r  t--it, 

If  we write y u [T#, g u] Vu = g UU y~r [T a,  Yu] Vv, we see that B u is given by the sum of  the 

fifth together with the sixth term on the right-hand side. Furthermore we have the identities 

--g ([Vu, T v ] -  --~s ~'--t* -u ,  F~,ura)=-g~*V('VuTu) 
(2.7) 

#urnS Tv ] #v EndS r~uT~) y tv~z, = g ((Vtz Tv) - = y~V('VtLTu). 

Here 'V : F ( E n d  S ® T ' M )  ~ F ( T * M  ® End S ® T ' M )  denotes the induced connec- 

tion 'V  : =  V End s ® 1T*M -k- REnd S ® V on the tensor bundle End S ® T*M. Because V 

respects the Clifford relation this means that 

1. abrvT*M®T*M®T*M, ab 'VuTv ~y vlz tabu ~ 1 = ~F tabv;tz. 

Due to the fact that y uu -- guy = F u y u  we obtain our result. [] 
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It is well known (see [BGV]) that given any generalized laplacian A on a hermitian 

bundle E over M, there exists a connection ~,E on E and a section F of the endomorphism 

bundle End(E), such that ,~ decomposes as 

Z~ = A be + F. (2.8) 

As we have mentioned before, this statement does not offer any possibility of calculating 
the endomorphism F explicitly. Since it can be shown (cf. [BGV]), however, that 

¢'l (X, X, /x) = ~ R v .  1E - F, 

it is evident that F plays a leading role in the computation of the subleading term qh (x, x, ~,) 

in the asymptotic expansion of the heat kernel of /~.  Moreover, by the main theorem of 
[KW] 2 

Res(/~_n+l) _ 2n - 2 f (2.9) * tr(~01 (x, x, 

M 

this endomorphism F also determines the Wodzicki residue of/~-n+~ which defines gravity 
actions in the case of A = ~2. 

We shall now prove a theorem which enables us to compute F explicitly in the case of 
E = S and/~ := ~2. 

Theorem 2.2. Let the hypotheses be the same as in Lemma 2.1 and let A =- ~2 be the 

square of  the Dirac operator D associated to V. Then the covariant derivative (7 s and the 

endomorphism F ~ F(End S) in the decomposition (2.8) are defined as follows: 

~ s  := v s  + T, (2.10) 

F := Ft + b~. (2.11) 

With respect to a local orthonormal frame {ea}l<a<n of TM,  7" c 121(M, EndS) and 

R c F(End S) are explicitly given by 

7"a = Ta -- 1 yb[Tb, Ya] (2.12) 

= 'Va f/'a %- fraT"a , ( 2 . 13 )  

where F ~ c F(End S) is the endomorphism (2.5) of Lemma 2.1. 

Proof The main ingredient of this proof is the global decomposition formula (2.3) of ~2 
as given in Lemma 2.1. Concerning the case of /~ = ~2, Eq. (2.3) is but an alterna- 
tive version of (2.8). We can therefore prove the theorem by inserting (2.10)-(2.13) into 
Eq. (2.8) which then is identical with (2.3). 

2 We denote by • the Hodge-star operator associated to the Riemannian metric g. 
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Thus we obtain the following formula for the square of the Dirac Operator D: 

52 _~ Afzs q_ 1 R .  1S q- yab(tgaTb) -Jr- 1 yab[ra, Tbl -k 1 [ya[Za, j/b], Tbl 

1 j/b[(,VaTb), j/a] + 1 rlabj/C[Tc, j/a]j/d[Td, j/b]. (2.14) 2 

In the case of t = 0, i.e. T = 0, this decomposition obviously reduces to the usual 
Lichnerowicz formula D 2 = A v + ¼ R v • lls. Consequently, we call (2.14) a 'generalized 

Lichnerowicz formula'. 

Notice that one has to take into account that in general it is impossible to find any Sk(T M)- 

valued one-form ~ E 121 (M, Sk (TM))  such that the endomorphism part Tx 6 End S of 

corresponds to tx ~ S k ( T M )  for all X E F ( T M ) .  Hence, ~,s is generally not induced by 
any metric connection ~' on TM.  However, i f t  ~ £21 (M, Sk (TM))  is totally antisymmetric 

we obtain the following. 

Lemma 2.3. Let M be a spin manifold, V the Levi-Civita connection on T M and V defined 
by V := V + t where t c 121(M, Sk (T M) )  is totally antisymmetric. Then T = 3T and 
consequently ~7 s = V s + 3T. 

This can simply be derived from the definiton (2.12) of T. 

3. Euclidian gravity 

According to Connes [C] there exists a link between the usual Dirac operator D := 

Flz V s on the spinor bundle S of a four-dimensional spin manifold M associated to the Levi- 
Civita connection and the euclidian Einstein-Hilbert gravity action via the Wodzicki residue 
Res(D -2) of the inverse of D 2. This has been explicitly verified in [K2]. Moreover, as 

already mentioned, the main theorem of [KW] states that the Wodzicki residue Res(/~-n+ l) 
of any generalized laplacian ix acting on sections of an hermitian vector bundle E over an 

even-dimensional manifold M with dim M = 2n > 4 can be identified with 

2n -22  / * t r (qh(x,x, /~)) .  

M 

Again (:i~)l (x, x, ?k) denotes the subleading term of the asymptotic expansion of the heat 
kernel of/~.  In this sense a gravity action can be defined by an arbitrary Dirac operator 
/~ := J /u~s  on S associated to a metric connection V on the base M, this means 

1 f , tr(q~l(X,X,~2))" (3.1) /GR(D) := --~-~ 

M 

Here 2 n = dime S is the complex dimension of the spinor bundle. By using our generalized 
Lichnerowicz formula (2.14), we can now easily compute tr(Ch (x, x, ~2)).  All that remains 
to be done is to take traces of J/-matrices. Thus, we obtain: 
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Lemma  3.1. Let M be a spin manifold with dim M = 2n even and 9 • F ( S) ~ F ( S) the 

Dirac operator on the spinor bundle S associated to a metric connection V := V + t as 

above. Then 

1 
1 tr(q~l(X, x, 92))  = 1 RV + __ (_tabctabc + 2tohcta~.b) (3.2) 

2 n 1-2 2" 

with respect to a local orthonormal frame o f  T M. 

Note that this result (3.2) holds independently of whether or not the corresponding Dirac 
operator 9 is self-adjoint with respect to the hermitian metric on the spinor bundle S. In 
the special case of the torsion tensor being totally anti-symmetric, (3.2) reduces to 

1 t r ( ~ l ( X , X , 9 2 ) )  = 1 RV 3 2 n 1-2 2 n tIabcltlabc] 

as already shown in [KW]. 
In order to find out whether (3.2) defines a pure (euclidian) Einstein~Cartan theory 3 we 

express theright-hand side of (3.2) by the scalar curvature R v of 5.  Using the well-known 

formulaRv = R V +  dVt + 1 [t/x t ] ,whereR ~ ~ I22(M, End T M)  denotes the curvature 

of V and d v is the exterior covariant derivative corresponding to the Levi-Civita connection 

V, we can rewrite (3.2) as follows 

1 1 1 
1 R" ~ -~- tabctbCa _ __ tabctabc q- tabctacb 2 nl tr(q~l (X, X, 92)) = --12 ~ 2" 

1 1 
+ - ~  tabbtacC 12 VutUaa" (3.3) 

Without additional mater fields, our result (3.2) obviously reduces to the usual Einstein 

theory of gravity. Hence, we obtain a result similar to that in [KW]. We also conclude from 

(3.3) that it is not possible to obtain a 'pure' Einstein-Cartan theory from the square of an 
arbitrary Dirac operator 9 associated to a metric connection on M by using the Wodzicki 

residue. 

4. C o n c l u s i o n  

In this paper we have proved a generalized version of the well-known Lichnerowicz for- 

mula for the most general Dirac operator 9 on thespinor bundle of an even-dimensional spin 

manifold M associated to a metric connection V on T M .  Applying this formula, the sub- 
leading term q~l (x, x, 9 2) of the heat-kernel expansion of 9 2 is easy to compute. According 
to [KW], the trace of this term plays a key role in the definition of a (euclidian) gravity 
action IGR (9)  in the context of the non-commutative differential geometry introduced by 
Connes [C]. This gravity action can be interpreted as defining a modified Einstein-Cartan 

theory. 

3 By an Einstein-Cartan theory we mean a gravity theory based on the Einstein-Hilbert action. 
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Finally, we would like to add that it is also possible to derive a combined Einstein-  

Hilbert/Yang-Mills lagrangian from an appropriately defined Dirac operator by using sim- 

ilar techniques. Moreover, this Dirac operator can be considered as a deformation of the 

well-known Dirac-Yukawa operator. This will be shown in a forthcoming paper [AT]. 
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